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Abstract 

 

A new cohesive zone model is developed to simulate the ductile to brittle failure transition in polycarbonate.  The 
model is formulated  so that as rate or stress state changes within a simulation,  the fracture energy and thus fracture 
mode may also change appropriately. The ductile to brittle transition occurs when the cohesive opening rate is greater 
than a threshold opening rate and when the stress state is close to plane strain in a fracture  specimen.  These effects 
are coupled in a phenomenological  model. The principal contribution of this work is that, in a glassy polymer,  the 
transition from slow to fast crack growth  as test loading  rate and/or sample thickness are varied can be simulated 
by using  a single  set of bulk and cohesive zone material  parameters.  This result enlists the use of the Simplified 
Potential Energy Clock (SPEC) model and the new cohesive zone model with rate and stress-state dependencies in 
three-dimensional finite element analysis. 

 

 
 

 
 
 
 
 
1. Introduction 

 
Engineering  thermoplastic  polymers are used in a variety  of applications.  Polycarbonate (PC) is a transparent 

engineering polymer noted for its toughness. Other transparent amorphous polymers, like polymethyl methacrylate 
(PMMA) and polystyrene  (PS), exhibit more brittle failure than PC. Because of polycarbonate’s  toughness, it is 
useful for applications  such as protective visors, goggles, helicopter canopies, automotive  headlight lenses, helmets, 
drinking bottles, riot shields, etc. Though PC exhibits greater toughness than other transparent amorphous polymers, it 
is subject to catastrophic failure in the presence of a flaw. In fact, its impact fracture strength in the presence of a sharp 
crack falls into the range that is typical of many common polymers. Since PC is used in protective-type applications, 
catastrophic failures can be hazardous to the individuals involved. 

In mode I loading,  polycarbonate can fail in one of two ways: ductile or brittle. Hull and Owen (1973) were 
the first to characterize the fracture surface morphology  of the two failure types. Ductile failure can be described 
as a “tearing” type of failure with significant  plastic deformation  and a high amount of energy required for failure. 
When glassy polymers are loaded under certain conditions (i.e., plane-stress or in uniaxial compression), they exhibit 
shear yielding.  Shear yielding  is a bulk process associated with ductile failure. In brittle failure, crack growth occurs 
rapidly with little macroscopic deformation and energy dissipation. Under certain tensile conditions (i.e., plane-strain 
or faster strain rates), many polymers fail in a brittle manner.  Brittle failure is often associated with crazing in the 
material (Kambour (1973), Ishikawa et al. (1977), Kramer (1984), and Estevez et al. (2000)). The ductile to brittle 
transition in glassy polymers is typically viewed  as a competition  between shear yielding and crazing. Crazing is 
a micro-mechanical  process where polymer  chains align in the direction of the maximum  principal  stress. Kramer 
(1984) provides  a comprehesive treatise on the crazing process.  Work performed by Wolstenholme et al. (1964), 



Ravetti et al. (1975), Broutman and Krishnakumar (1976), Yee (1977), and Selden (1987) indicate that polycarbonate

(and some other glassy polymers) actually have two distinct energy release rates associated with mode I crack growth.

The lower (or critical) value is associated with fast, unstable fracture, while a higher threshold value exists that is

associated with slower, ductile and potentially stable crack growth. Some conditions that can lead to a transition

from one failure energy to the other include loading rate, test temperature, plastic zone size, specimen thickness (i.e.,

plane-stress or plane-strain stress state), and notch sharpness.

Commonly used approaches for simulating failure with finite elements can include implicit approaches (like the

X-FEM approach introduced by Moes et al. (1999)), hybrid methods like an element deletion technique, and explicit

approaches that use cohesive elements. Implicit approaches utilizing the X-FEM typically enforce a failure criterion

that results in element enrichment to model crack growth. The method can be desirable because exact theoretical

solutions can be exactly matched. Sample failure criteria could be critical crack tip opening displacement (CTOD)

or critical stress intensity factor (KIC). These techniques have been used with great success, but can quickly become

overly complex in three dimensional analyses. An element deletion technique was used by Gearing and Anand (2004)

to model failure in glassy polymers. Element deletion is typically used in finite strain analyses when elements can

become distorted and bulk processes control failure. Mass and energy conservation can cause error accumulation

when using element deletion techniques. Explicit techniques that utilize cohesive zone elements have been used with

considerable success for modeling failure. The works of Tijssens et al. (2000), Estevez et al. (2000) introduce a

rate and temperature dependent cohesive zone for crazing in glassy polymer failure. Anvari et al. (2006) introduce

a rate and stress-dependent cohesive zone model designed for failure in metals. Models based on this work have

been successfully applied in 2D quasi-static investigations of ductile failure by Banerjee and Manivasagam (2009)

and Scheider et al. (2011).

Caruthers et al. (2004) developed a thermodynamically consistent, nonlinear viscoelastic bulk constitutive model

based on a potential energy clock (PEC) for modeling polymer deformations. It relies on the assumption that all poly-

mer relaxation rates depend on the potential energy of the system. Typically, polymers are modeled with hyperelastic,

plasticity, or viscoelastic models. The models can give similar results under certain circumstances, but the physical

differences are significant. Glassy polymers do exhibit a linear viscoelastic response that does not significantly change

with temperature except that relaxation times change. Because of its formulation, the PEC model predicts mechanical

yield as a natural consequence of relaxation behavior induced by loading. Plasticity models predict yield, but need

a second mechanism to describe the glass transition. Hyperelastic models do show a softening type of behavior, but

hysteresis effects are not naturally accounted for. Adolf et al. (2009) developed a method of simplifying the PEC

model to create a more usable constitutive model for general engineering analyses. They termed the model the Sim-

plified PEC model or SPEC. The main contributions of the SPEC model were to create a formulation that was simpler

to parameterize and implement computationally. The model was shown by Adolf et al. (2009) to successfully capture

the time and temperature dependent behavior of polymers. It is attractive because one set of material parameters can

predict a wide range of material behaviors like stress relaxation, yield, volume relaxation after quenching into glass,

and physical aging for both thermoplastic and thermoset polymers.

In this work, a new cohesive zone model is developed and implemented to simulate the ductile to brittle failure

transition in polycarbonate. The model is rate and stress-state dependent and accounts for both the high and low energy

failure modes associated with ductile and brittle failure, respectively. The rate dependence of the model is capable

of capturing the failure mode transition due to changes in the external loading rate. The stress-state dependence of

the model is capable of capturing the failure mode transition due to thickness effects, i.e., plane-strain or plane-stress.

For the first time, these effects are coupled in a way that a consistent set of parameters can be used to simulate

the transition from ductile to brittle failure in a glassy polymer due to either or both of these effects. The CZM is

based on the simple model introduced by Tvergaard and Hutchinson (1992) but allows for two distinct energies per

unit area of crack growth: 1) a high energy case associated with ductile failure and slow crack growth and 2) a low

energy case associated with brittle failure and fast crack growth. This is important because polycarbonate does not

show a continuous transition in failure energy as loading rate or stress state change. Rather, an abrupt transition

occurs from high to low energy failure at a critical point. The discrete manner of this implementation naturally lends

itself to simulation using explicit dynamics. It is also important to recognize that a robust bulk constitutive model is

necessary to capture the failure transition because in ductile failure, high amounts of energy are dissipated through

bulk processes. A cohesive zone model is used, in this analysis, to simply enforce the appropriate energetic and bulk

response for failure based on empirical evidence of strain-rate and stress-state effects.
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First, the form of the SPEC model used for this study will be outlined in Section 2. The new CZM developed for

this work will be presented in Section 3. Section 4 will present the finite element method and the initial boundary

value problem used in this work. Section 5 will present the numerical experiments performed to demonstrate the

problem set-up for mode-I fracture simulations for the single edge-notch tension (SENT) specimen geometry and the

results of those analyses. The final section will conclude with a discussion of the findings of this study and a summary

of the contributions.

2. Bulk Constitutive Model - Simplified Potential Energy Clock (SPEC)

Glassy polymers behave in a nonlinear viscoelastic manner that is also temperature-dependent. Polymer relaxation

rates diminish as the test temperature decreases below the glass transition temperature, Tg. Generally, viscoelastic and

viscoplastic models lack the robustness to describe a full range of polymer behaviors such as stress relaxation, yield

under constant strain rate loading, volume relaxation after quenching into glass, and physical aging (see Caruthers

et al. (2004) and Adolf et al. (2009)).

The following is a brief summary of the PEC and SPEC models. Readers are referred to Caruthers et al. (2004)

and Adolf et al. (2009) for the full theoretical development of those models. The PEC and SPEC models begin with

the expansion of the Helmholtz free energy Ψ about an equilibrium state that would exist at the current temperature T
and density ρ.

Ψ = Ψeq(T,H)

+
1

2
Ψ1

∫ t

0

∫ t

0

ds du f1(t� − s�, t� − u�)
dI1

ds
dI1

du

+ Ψ2

∫ t

0

∫ t

0

ds du f2(t� − s�, t� − u�)
dH

ds
:

dH

du

+ Ψ3

∫ t

0

∫ t

0

ds du f3(t� − s�, t� − u�)
dT
ds

dI1

du

+
1

2
Ψ4

∫ t

0

∫ t

0

ds du f4(t� − s�, t� − u�)
dT
ds

dT
du

(1)

where H is the Hencky strain measure, which is a logarithmic strain measure, and I1 is its first invariant that is

a function of volume only. This avoids volumetric inconsistencies that can arise with other strain measures. The

prefactors Ψ1−4 depend on the current strain and temperature and are related to, though not necessarily equal to the

bulk modulus K, the shear modulus G, the coefficient of thermal expansion α, and the specific heat capacity at a

constant volume Cv, respectively. The functions f1−4 are relaxation functions dependent on the ‘material time’, t�,

that is dependent on the potential energy of the system, Epot, that can be described by a generalized Williams-Landel-

Ferry (WLF) equation

t� − s� =
∫ t

s

dx
a(x)
, (2)

where

log a = −C1

⎡⎢⎢⎢⎢⎢⎢⎣
Epot − Epot

re f

C′
2
+ Epot − Epot

re f

⎤⎥⎥⎥⎥⎥⎥⎦ , (3)

where C1 is the first WLF constant and C′
2 is related to the second WLF constant. The first Piola-Kirchhoff stress can

be calculated by

S = ρre f

⎛⎜⎜⎜⎜⎜⎝∂Ψ∂H
⎞⎟⎟⎟⎟⎟⎠

T

:
dH

dE
, (4)

3



where E is the Green-Lagrange strain measure1. The Cauchy stress can be found in the usual way, σ =
(
ρ/ρre f

)
F · S ·

FT, where F is the deformation gradient which can be broken down into rotated and unrotated or rotation and stretch

components as

F = R · U. (5)

The use of the Hencky strain measure requires the calculation of a logarithmic strain measure and a fourth-order

tensor for the Piola-Kirchhoff stress (see (4)). In order to simplify these calculations, the SPEC model utilizes an

approximation of the Hencky strain rate by the unrotated rate of deformation tensor, d

d =
1

2

⎡⎢⎢⎢⎢⎢⎣U−1 ·
dU

dt
+

dU

dt
· U−1

⎤⎥⎥⎥⎥⎥⎦ . (6)

If the approximate stress associated with d is called σ
d
, then the Cauchy stress can be calculated by

σ =
ρ

ρre f
R · σ

d
· RT. (7)

In order to arrive at the final Cauchy stress to be used in calculations, the Hencky strain of (1) is replaced by d.

The model prefactors Ψ1−4 are assumed to be constant so that they take on relationships to the physical quantities

discussed earlier. Finally, the relaxation functions f1−4 are replaced with either fv or fs which stand for volumetric and

shear relaxation functions. The general relaxation functions are either related to volumetric quantities (bulk modulus,

coefficient of thermal expansion, and specific volumetric heat capacity) or a shear quantity (i.e., shear modulus).

Adolf et al. (2009) state that in previous parameterizations, the volumetric relaxations differed very little and could be

lumped into a single relaxation function. The final Cauchy stress is expressed by

σ =
ρ

ρre f

[
Kd(T )

∫ t

0

ds fv(t� − s�)
dI1

ds

−Ld(T )

∫ t

0

ds fv(t� − s�)
dT
ds

]
I

+
2ρGd(T )

ρre f

∫ t

0

ds fs(t� − s�) ×
[
R(t) · d

dev
· R(t)−1

]

+
ρ

ρre f

[
K∞(T )I1 − L∞(T )

{
T − Tre f

}]
I

+
2ρG∞(T )

ρre f

[
R · ε

dev
· R−1

]
, (8)

where (.)d = (.)g−(.)∞ is the difference between a material value in the glassy state and in the rubbery state, the product

of the bulk modulus and the coefficient of thermal expansion is expressed as L = Kα, and ε
dev

is the deviatoric part of

the integrated rate of deformation tensor. For completeness, (3) can be recast as

log a = − C1N
C′′

2
+ N
, (9)

where

C′′
2 = C2

[
1 +C3α

re f
∞

]
� C2

⎡⎢⎢⎢⎢⎢⎣1 + Tre f Lre f
d α

re f
∞

ρre f C
re f
vd

⎤⎥⎥⎥⎥⎥⎦ , (10)

where C2 is the second WLF coefficient and

N =

[{
T − Tre f

}
−

∫ t

0

ds fv(t� − s�)
dT
ds

]

1E is a tensor quantity that is distinct from the scalar Epot used in (3).
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+ C3

[
I1 −

∫ t

0

ds fv(t� − s�)
dI1

ds

]

+ C4

∫ t

0

∫ t

0

ds du fs(t� − s�, t� − u�)d
dev

(s) : d
dev

(u),

(11)

where

C3 ≈
Tre f Lre f

d

ρre f C
re f
vd

, (12)

and

C4 ≈ −
Gre f

d

ρre f C
re f
vd

. (13)

C3 and C4 are clock constants that describe the dependence of relaxation times on volume and applied deformations.

C3 produces an apparent glass transition temperature with pressure and C4 produces yield. The volumetric and shear

relaxation functions take the form of a stretched exponential function

fv,s(t) = exp

⎡⎢⎢⎢⎢⎣−
(

t
τv,s

)βv,s
⎤⎥⎥⎥⎥⎦ , (14)

where τ and β are the constants of the relaxation function that need to be determined through experiment.

3. Cohesive Zone Model Development

3.1. Introduction to CZMs
In order to introduce cohesive zone models, it is first beneficial to introduce the concept of cohesive failure. Zhang

et al. (2007) offer a clear explanation of CZM theory. At the crack tip, materials cannot sustain theoretical infinite

stress values associated with the stress singularity. The material softens in the crack tip regions where it is also subject

to various micromechanical processes such as microvoid formation, micro-cracking, polymer chain orientation, and/or

crazing. This softening can be simulated by a traction-separation law acting in the cohesive zone in a plane along the

path of potential crack propagation. The theory of cohesive zones was first introduced by Barenblatt (1959) and

Dugdale (1960) as a plastic strip yield model. Within the cohesive zone, the material separates to a distance Δαcoh as

a result of the stresses acting near the crack tip. The superscript α is used to indicate the component of the traction

tensor of interest. α = {n, t1, t2} for the normal component of displacement and the two tangential components t1
and t2, respectively. The cohesive zone surface sustains a distribution of tractions σ̂αcoh, which are functions of the

displacement jump across the surface Δαcoh. The relationship between σ̂αcoh and Δαcoh is defined as the constitutive law

for the cohesive zone surface.

3.2. Model Background
The cohesive zone constitutive law used in this work is derived from the model presented by Tvergaard and

Hutchinson (1992). Figure 2 displays the traction-separation behavior of that model referred to as the TH model. In

the model, δα
1
, δα

2
, and δαc are shape parameters that are bounded by 0 ≤ δα ≤ 1 where

δαc =
Δαcoh

Δαp
= 1. (15)

Cohesive failure occurs when the normal cohesive opening is greater than or equal to the peak normal cohesive

opening, i.e., Δn
coh ≥ Δn

p. The traction response is calculated by a piecewise function as

σ̂αcoh =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̂αp
δ1Δ

α
p
Δαcoh for Δαcoh ≤ δα1Δαp

σ̂αp for δα
1
Δαp < Δ

α
coh < δ2Δ

α
p

σ̂αp

(
1

1−δα
2

) [
1 − Δαcoh

Δαp

]
for δα

2
Δαp ≤ Δαcoh ≤ Δαp

, (16)
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a b
a b

σ̂n
coh

σ̂n
coh

Δn
coh

Δn
coh

Figure 1: Generic cohesive zone description (adapted from Zhang et al. (2007) and Barenblatt (1959)). On the top left, micro-mechanical processes

are depicted as micro void formation and crazing. These are idealized as a fracture process zone from a to b where a traction-separation law controls

the normal opening behavior in that region.

where 0 < δα
1
< δα

2
< 1 because the separation value of the cohesive zone is normalized by the maximum separation

Δαp.

δαc = 1δα
2

δα
1

1

σ̂αcoh
σ̂αp

Δαcoh
Δαp

Figure 2: Traction-separation law from Tvergaard and Hutchinson (1992).

Tvergaard and Hutchinson (1992) show that the work of separation per unit area which is found by calculating the

area under the traction-separation curve is given by:

W0 =

∫ Δn
p

0

σ̂n
cohdΔn

coh

=
1

2
σ̂n

pΔ
n
p

(
δnc + δ

n
2 − δn1

)
. (17)

3.3. Failure Energy

As stated earlier, polycarbonate (and some other glassy polymers) actually have two distinct energy release rates

associated with crack growth. The lower (or critical) value is associated with fast, unstable fracture, while a higher

threshold value exists that is associated with slower, ductile and potentially stable crack growth. In examining the

transition from ductile to brittle failure, it is necessary to formulate a cohesive zone model that will account for both

6



energy requirements simultaneously. That is, the cohesive zone model must require high amounts of energy in some

instances, but also be capable of capturing the worst-case (minimal energy) scenario for crack growth.

Figure 3 demonstrates the normal direction traction-separation behavior of the new cohesive zone model and (18)

displays the traction-separation equation.

σ̂αcoh =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̂α

δα
1
Δα
Δαcoh for Δαcoh ≤ δα1Δα

σ̂α for δα
1
Δα < Δαcoh < δ

α
2
Δα

σ̂α
(

1
1−δα

2

) [
1 − Δαcoh

Δα

]
for δα

2
Δα ≤ Δαcoh ≤ Δα

(18)

In the high energy case, the normal direction components are Δn = Δmax and σ̂n = σ̂max and in the lower energy (or

critical) case, Δn = Δmin and σ̂n = σ̂min. Two different energy values are possible depending on the fracture mode

(ductile or brittle). In the tangential directions, σ̂t1 = σ̂t2 = σ̂min and Δt1 = Δt2 = Δmin. The tangential direction model

parameters could be adjusted for a more general loading scenario, but the minimum values of the normal direction

were used since only mode I loading was considered in this work. The remainder of this section will focus on the

normal opening direction of the cohesive zone model, since it is the most important in mode I loading.

ΔmaxΔmin

σ̂min

σ̂max

σ̂n
coh

Δn
coh

Figure 3: Normal traction-separation behavior of new cohesive zone model. Two distinct traction-separation behaviors are possible depending on

the expected fracture mode (ductile or brittle).

In this work, two factors were used to determine which traction-separation curve was used: normalized cohesive

zone opening rate and the stress state of the surrounding bulk material. The mode I cohesive zone opening rate is

directly influenced by the test loading rate. The stress state of the surrounding material is directly influenced by the

specimen thickness. The limits of the stress state are represented as plane-stress and plane-strain scenarios; however,

three-dimensional problems will represent a range of stress states somewhere between the limits. Figure 4 shows

how the cohesive energy Ecoh for failure changes when either the cohesive opening rate or the stress state in the

surrounding material reach critical levels: λC and σRC , respectively. σR is a stress ratio related to the amount of plane

strain present. It will be defined more rigorously in Sections 3.5 and 3.6.

3.4. Rate Dependence
Consider Figure 4 in the case of rate controlled failure. If the relative opening rate λ is slow, the higher energy

traction-separation law will dominate. Alternatively, if the relative opening rate rate is fast, the lower energy traction-

separation law will dominate the behavior. If the loading rate fluctuates, the law is free to move between the two

energy values and thus, the two curves of Figure 3.

For a given time t, that is updated to a new time t + dt over a time step of size dt, the normalized cohesive opening

rate over dt is calculated as

λ =
Δn

t+dt − Δn
t

Δn
p · dt

, (19)
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λC ,σRC

Ecoh

λ,σR

Ehigh

Elow

Figure 4: Cohesive energy as a function of cohesive opening rate or stress state. Higher opening rates or higher stress states (plane-strain) result in

lower energy requirements for failure.

where Δn
t represents the cohesive separation at time t and Δn

p is the peak separation resulting in failure of the cohesive

zone and can be either Δmin or Δmax depending on the energy required for failure. λ is divided by the time step in

order to account for changes in the amount of opening that can occur because of changes in the time step. That is, in

a large time step, more opening can occur, while the rate of opening is actually the same. This is how the separation

rate was calculated in this work to determine the controlling traction-separation curve. The model parameter λC can

be adjusted to capture the failure behavior seen in experiments at different loading rates.

3.5. Stress-State Dependence

The stress-state of the material ahead of the crack front affects crack propagation. In standard ASTM-designated

fracture toughness testing, the thickness of the sample must be large enough to constrain deformation in the thickness

direction (predominantly plane-strain situation) and result in a minimal amount of energy required for failure. At least

one example of a stress-state dependent cohesive zone has been implemented by Anvari et al. (2006), their work was

performed on two-dimensional plane-strain models. However, Section 5.4.1 will show that three-dimensional analysis

is beneficial in analyzing the plane-strain/plane-stress condition.

Figure 5 represents a planar crack in an arbitrary domain. Assume the loading is mode I; therefore, the loading

direction y′ should be orthogonal to the crack propagation direction x′ and in the same direction as the maximum

principal stress. Therefore, for a Cartesian coordinate system, the last coordinate direction z′ will be the direction that

is orthonormal to the plane x′y′. The component of the stress tensor acting in the z′ direction is the component of

interest, since this is the out of plane stress associated with the plane stress or plane strain condition. It is desirable

to perform the cohesive zone stress analysis in the {x′, y′, z′} space. However, the stress tensor is usually expressed in

terms of the global coordinate space {x, y, z}. A standard coordinate transformation can be used to relate the global

stress tensor σi j to the crack-oriented stress tensor σ′km expressed as

σ′km = σi j
∂x′k
∂x j

∂x′m
∂xi
= σi jβk jβmi, (20)

where βk j = cos (x′k, x j) is the cos of the x′k axis with respect to the x j axis.

Since the in-plane components remain relatively constant, an appropriate value to determine the relative magnitude

of the thickness-direction stresses is

σR =
σ′zz

σ′xx + σ
′
yy
, (21)
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x′

y′

z′

Figure 5: Planar crack in an arbitrary domain.

where σR is the bulk stress ratio mentioned in Section 3.3. This ratio is especially convenient for analysis, since from

the generalized Hooke’s law in the plane-strain case,

σ′zz = ν
(
σ′xx + σ

′
yy

)
(22)

where ν is Poisson’s ratio. Therefore,

σR = ν (plane − strain) (23)

for a plane-strain linear elastic problem. By the definition of plane-stress, σ′zz = 0; therefore,

σR = 0. (plane − stress) (24)

It has been shown that the mechanical behavior of polymers depends on their stress, strain, and temperature

history. This dependence is characterized by the material clock of the SPEC model. Further, during explicit dynamics

calculations, the stress (and displacement) field can become noisy with spurious high frequency oscillations that are a

numerical artifact of crack growth. Therefore, we find it beneficial to average σR over time. A large number of time

averaging schemes for σR are possible. In this work, σR was averaged over a window of time as

σR =
1

t2 − t1

∫ t2

t1
σR dt, (25)

where t1 and t2 merely represent a window of time in which to average σR. The initial time t1 was taken as the moment

that the cohesive traction was 50% of σ̂min from Figure 3. The upper bound t2 was taken to be the current time.

3.6. Coupled Stress State and Rate Effects

The last step in formulating the cohesive zone model is to couple the stress state controlled failure and the rate

controlled failure into one parameter. The result of this coupling was that a single fracture mode would be predicted

by the model after taking into account the cohesive opening rate and the stress state of the surrounding bulk elements.

Recall that the critical opening rate and stress ratio that result in the transition from high to low failure energy are λC

and σRC , respectively. The fracture mode is given by the value of P, calculated as

P =
[
A
σR

σRC
+ (1 − A)

λ

λC

]
, (26)
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where 0 ≤ A ≤ 1 is a separate parameter, determined by the user, which allows for user control regarding how

much each critical parameter can affect the fracture mode. Exclusively rate-dependent behavior occurs when A = 0.

Exclusively stress state-dependent behavior occurs when A = 1. In order to investigate the stress-state and rate coupled

case, A = 0.5 in this work. If P is calculated to be greater than or equal to 1, it is assumed that the low energy criterion

will control and fast, brittle failure is expected. This corresponds to either a plane strain stress state or a fast loading

rate. Alternatively, P < 1 indicates that the specimen is either in plane stress or the loading rate is slow and the high

energy criterion will control resulting in slow, ductile failure.

As a summary, the normal cohesive tractions are calculated by

σ̂n
coh =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ̂n

δ1Δ
n
p
Δn

coh for Δn
coh ≤ δ1Δn

p

σ̂n for δ1Δ
n
p < Δ

n
coh < δ2Δ

n
p

σ̂n
(

1
1−δ2

) [
1 − Δn

coh
Δn

p

]
for δ2Δ

n
p ≤ Δn

coh ≤ Δn
p

(27)

where Δn
coh is the displacement jump across the cohesive element’s normal direction (direction of crack opening), σ̂n

coh
is the actual traction returned by the cohesive zone, and σ̂n and Δn

p are the peak traction and cohesive opening values

used in calculations. Those are determined by

if (P ≥ 1)

Δn
p = Δmin

σ̂n = σ̂min

else

Δn
p = Δmax

σ̂n = σ̂max.

4. Initial Boundary Value Problem

In this work, the crack path was specified a priori. Therefore, the propagation direction was taken to be the same

as the global x direction, the loading direction was the global y direction, and the out of plane direction was the z
direction. In this orientation, the in-plane stresses are the σxx, σyy, and σxy components of the stress tensor. The

thickness direction axial stress is then σzz.

Consider an arbitrary cracked domain Ω with natural and kinematic boundary conditions as seen in Figure 6. The

boundary of Ω is specified by Γ, with appropriate subscripts defining the surfaces where boundary conditions act on

Ω. The dashed boundary Γc represents the portion of the geometry ahead of the crack tip where cohesive surfaces are

defined. The governing equilibrium equation for the entire body at an instant in time can be written as∫
Γ

σ̂ dΓ +
∫
Ω

ρb dΩ =
∫
Ω

ρü dΩ, (28)

where σ̂ are traction vectors, b are body forces, and ü represents the second time derivative of the displacement field,

the acceleration. In general, tractions are defined as

σ̂ = σ n, (29)

where n is a vector normal to the boundary the traction acts upon which is chosen pointing outward of Ω. Applying

the definition of the tractions and the divergence theorem, the equilibrium equation can be recast as a domain integral:∫
Ω

(
∇ · σ + ρb − ρü

)
dΩ = 0. (30)

From 30, the momentum equation can be extracted:

∇ · σ + ρb − ρü = 0, (31)
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Γg

Γc

Γv

v

Ω

Figure 6: Cracked domain with natural and kinematic boundary conditions. Γc represents the cohesive surface.

where σ is the Cauchy stress tensor, determined by (8). The initial boundary value problem consists of finding the

displacement field that satisfies the momentum equation subject to initial conditions, natural boundary conditions, and

kinematic boundary conditions. The general initial conditions are defined by

u(x, 0) = u0(x) in Ω

v(x, 0) = v
0
(x) in Ω,

(32)

where v = u̇ is the velocity. The natural boundary condition is given by

u = g on Γg, (33)

where g represents a known displacement value on a surface denoted Γg. The surface denoted Γc represents the

cohesive surface. The details of the traction-separation law of the cohesive surface model were presented in Section 3.

On Γc, the closing traction force can be expressed as a function of the displacement jump Δn
coh in the normal direction

across the cohesive surface as

σ̂c = F
(
Δn

coh

)
on Γc. (34)

Lastly, a kinematic boundary condition is expressed in terms of velocity which is obtained by differentiating the

displacement in time:

u̇ = v = h on Γv (35)

where h is a velocity value or function of time that is known on the boundary Γv.

Combining all these equations, the strong form of the initial boundary value problem can be stated in the following

way: given b, g, h, u0, and u̇0, find u : Ω×]0, T [→ R such that

(S )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρü =
∂σ

∂x + b on Ω×]0, T [

u = g on Γg×]0, T [

v = h on Γv×]0, T [

σ̂c = F
(
Δn

coh

)
on Γc×]0, T [

u(x, 0) = u0 x ∈ Ω
u̇(x, 0) = u̇0(x) x ∈ Ω

, (36)

where ]0, T [ represents the open interval of time from 0 to final time T . The weak form of the equation of motion can

be obtained by multiplying (31) by a vector-valued test function w that represents the virtual change in displacement.

Then integrating over the domain of the body and applying the product rule and the divergence theorem to give

0 =

∫
Ω

σ∇wdΩ +
∫
Ω

ρü w dΩ
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−
∫
Ω

b δw dΩ −
∫
Γext

σ̂w dΓ

−
∫
Γc

σ̂c

[[
w
]]

dΓ, (37)

where the last integral term is the contribution to the weak form from the cohesive surface Γc arising from the cohesive

opening Δcoh and Γext refers to the external boundary of Ω, or all boundaries except Γc. That is,

Γ = Γc ∪ Γext. (38)

Introducing the standard Finite Element discretization gives rise to the element matrix problem:

M
e

d̈e + Fint
e = Fext

e , (39)

where the subscript e represents the matrix or vector on the element level,

M
e
=

∫
Ωe

ρNT
e

N
e

dΩ (40)

is the consistent mass matrix,

Fint
e =

∫
Ωe

BT
e
σ dΩ −

∫
Γc

NT
e
σ̂c dΓ (41)

describes the element internal force vector, and

Fext
e =

∫
Ωe

NT
e

b dΩ +
∫
Γext

NT
e
σ̂ dΓ (42)

describes the elemental external force vector. The N
e

are matrices containing the finite element shape functions and B
e

are matrices containing the spatial derivatives of the shape functions. The external tractions arising from the cohesive

surface on Γc can be evaluated by the traction separation law given by (27). The elemental equations are assembled to

give rise to the global matrix problem: given F :]0, T [→ R
neq , find d :]0, T [→ R

neq such that

M d̈ = Fext − Fint t ∈]0, T [

d(0) = d
0

ḋ(0) = ḋ
0
.

(43)

This system was then solved using an explicit time integration scheme with a lumped mass matrix. The next section

will detail the numerical analyses performed using the bulk and cohesive zone constitutive models detailed in this

section.

5. Numerical Analysis and Discussion

5.1. Problem Setup

Figure 7 shows the single edge notch tension (SENT) geometry simulated by finite element analysis. The SENT

geometry was chosen for a simple set up in which to perform the parameter study. In this work, the crack path was

specified a priori along the surface Γc. Three-dimensional simulations were performed on samples ranging from 1 to

4 mm in thickness. The top portion of the specimen represents Γv. A vertical (positive y direction) velocity ranging

from 8000 mm/min to 500 mm/min was specified on this boundary. This loading rate range gives a corresponding

mean strain rate range of 13.333 s−1 to 0.833 s−1. The bottom surface of the specimen represents Γg. That surface was

12



Γg

Γc

Γv

10 mm

20 mm

10 mm

Ω

Figure 7: SENT domain with natural and kinematic boundary conditions. The crack path was specified a priori along Γc. A prescribed velocity

was placed on Γv and displacement was fixed on Γg.

fixed in the vertical (y) direction. Both Γv and Γg were fixed in the x and z directions in all simulations. Lastly, the

dotted horizontal line through the center of the specimen denotes the cohesive surface portion of the boundary Γc.

Using the SPEC model, bulk deformation depends upon the thermal and strain history of the material. The thermal

history is defined from an initial reference state at a reference temperature. In accordance with Adolf et al. (2009),

the reference temperature used for polycarbonate is 423 K and is above the glass transition temperature. The material

must be cooled in the simulation to the test temperature (i.e., room temperature). This occurs (similarly to annealing)

over a rather large time frame. As suggested by Chambers (2010), that time was taken to be 8500 seconds. Therefore,

the first 8500 seconds of the simulation were designated only for a thermal cool down and were performed in a quasi-

static sense with inertial effects neglected. This allowed for much larger time stepping. After the cool down was

completed, the specimens were loaded by the boundary conditions discussed in the previous paragraph with inertial

effects considered in an explicit dynamic scheme. The SPEC model parameters used in this study were taken from

Adolf et al. (2009) and are listed in Table 1.

5.2. High vs. Low Energy Failure - TH Model Parameter Study

Recall that the new CZM implemented in this work is derived from the model developed by Tvergaard and

Hutchinson (1992). If σ̂min = σ̂max and Δmin = Δmax, then that model is exactly recovered. It is then possible to

perform a parameter study on σ̂ and Δ to specify how different failure energies affect crack growth in simulations.

As discussed earlier, the works of Wolstenholme et al. (1964), Ravetti et al. (1975), Broutman and Krishnakumar

(1976), Yee (1977), and Selden (1987) provide some insight into the amount of energy required per unit area of crack

advance in PC. All of the mentioned works, excepting Selden (1987), were performed on impact tests. In impact tests,

the energy per unit area of crack growth reported is in the range of 1.5 × 103 to 7.0 × 103 N-m/m2 for brittle failures

and in the range of 52.0 × 103 to 70.0 × 103 N-m/m2 for ductile failures. Selden (1987) performed failure analysis on

compact tension specimens and reported failure energy per unit area of crack advance to be in the range of 1.5 × 103

to 2.6× 103 N-m/m2 for brittle failures and in the range of 12.3× 103 to 14.9× 103 N-m/m2 for ductile failures. While

test setup plays a role in the failure energy, the important conclusion is that brittle or fast fracture results in a minimal

energy per unit area of crack growth while ductile or slow failure results in a much higher energy per unit area of

crack growth.

Using these works as a baseline for crack growth, the parameters for fast fracture were σ̂min = 50 MPa and

Δmin = 8 × 10−5 m. These values resulted in a cohesive energy for failure of 3.8 × 103 N-m/m2. The first value was

physically intuitive since 50 MPa is near, but not over, the yield stress of polycarbonate and brittle failure is expected

to occur with minimal finite strain deformation. The value of Δmin was chosen so that the cohesive energy would be

in the expected range for brittle crack growth. The subsequent values used to represent the high energy or ductile

failure scenario were σ̂max = 106 MPa and Δmax = 3.0 × 10−4 m. A parameter study not shown here led to these

values. In this case, σ̂max was set high enough to force large strain deformations in the surrounding bulk material.

It was expected a priori that slow crack growth would manifest itself by allowing a finite amount of crack extension
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Table 1: Parameters values of the SPEC model

Parameter Value Units

Tre f 423.15 ◦Kelvin

K∞(Tre f ) 3.2 GPa

Kg(Tre f ) 4.9 GPa

α∞(Tre f ) 0.00058 ppm/◦C
αg(Tre f ) 0.000185 ppm/◦C
dα∞/dT 6e-7 ppm/◦C2

dαg/dT 1e-7 ppm/◦C2

G∞(Tre f ) 1 Pa

Gg(Tre f ) 0.65 GPa

dG∞/dT 0.0 GPa/◦C
dGg/dT -0.2 MPa/◦C
C1 12 -

C2 42 ◦C
C3 2000 ◦C
C4 15000 ◦C/Pa

τv 20 s−1

βv 0.15 -

τs 0.15 s−1

βs 0.38 -

(approximately one to three elements), then some time would pass without crack growth. Stress would then build

in the specimen before more cohesive failure would occur. The crack would continue to progress in this start/stop

mechanism through the entire specimen. The parameters chosen for Δmax and σ̂max represent the first instances where

the crack growth proceeded in an obvious start/stop manner. The cohesive energy associated with failure in this case

with the parameters mentioned was 30.2 × 103 N-m/m2. For completeness, δ1 = 0.05 and δ2 = 0.95 in this work.

As a parameter study, the values for σ̂max and Δmax can be placed into the TH model to yield a slow crack growth

scenario. Alternatively, the parameter values for σ̂min and Δmin can also be introduced to yield a fast crack growth

scenario. Figure 8 displays the instantaneous crack velocity as a function of crack position for the fast case and the

slow case. The total work per unit area of crack growth was evaluated for the entire simulation by taking the area

under the global load-displacement curve seen in Figure 9. it was found to be 3.9× 103 N-m/m2. Accounting for bulk

elastic deformations increased the energy required for crack growth, by about 3%. The total work per unit of crack

growth is still well within the range specified by the earlier referenced works. The total time for crack growth in the

slow case is about 1.0 × 10−3 s and about 40.0 × 10−6 s in the fast growth case.

Table 2 summarizes the findings of the CZM model parameter study used to parameterize the rate and stress state

dependent cohesive zone model for this work.

Table 2: Summary of parameter study of CZM model behavior for fast and slow failure.

Low Energy High Energy

σ̂ (MPa) 50 106

Δ (m) 8 × 10−5 3 × 10−4

max vel (m/s) 488 150

avg vel (m/s) 214 9

Ecoh (×103 N-m/m2) 3.8 30.2

Etot (×103 N-m/m2) 3.9 34.5

εmax (% in bulk) 3 7
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Figure 8: Fast and slow crack velocities with TH model. In the low energy case, crack velocity builds to greater than 1/2 the Rayleigh wave speed,

or 488 m/s. Crack velocity averages about 7.6 m/s with a peak of 22.8 m/s in the middle portion (normalized crack position between 0.1 and 0.8)

of the slow crack growth scenario. Velocity is calculated by the distance the crack has advanced since the last instance of crack advance divided by

the difference in time between the two crack growth occurrences.
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Figure 9: Load-displacement plots for fast and slow crack growth cases. The energy for failure was 3.9 × 103 N-m/m2 in the fast growth case and

34.5 × 103 N-m/m2 in the slow growth case.

5.3. Rate-Controlled Crack Growth

During rate dependent simulations, the parameter A of (26) was set to be equal to zero. Rate effects were in-

vestigated using a thin (1 mm in thickness) geometry since thickness effects were not important. Table 3 shows the

predicted fracture mode with only rate dependence considered by the cohesive zone model. As the loading rate (units

of mm/min) is decreased, it is expected that more ductile or slow failures will occur. For any given value of λC ,
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this is the case. The key feature of this model is the ability to capture the energy for failure required under different

fracture modes. Conventional wisdom indicates that strain-rate sensitive materials harden with increases in loading

rate. However, implementation of this behavior typically is performed by constructing a cohesive zone model that

returns a higher traction value at increased loading rates. This results in higher energy values for failure, which is

not consistent with the results reported earlier by Wolstenholme et al. (1964), Ravetti et al. (1975), Broutman and

Krishnakumar (1976), Yee (1977), and Selden (1987). Rather, this work simply enforces a lower overall energy for

failure that corresponds to the worst-case scenario at high cohesive opening rates above λC . This logic has the ability

to capture the rate dependent fracture mode transition seen in the laboratory in PC.

Table 3: Rate dependence of new cohesive zone in fracture simulations.

Loading Rate (mm/min)

λC 8000 4000 2000

2.40 × 105 fast fast fast

2.45 × 105 fast fast fast

2.46 × 105 fast fast slow

2.47 × 105 fast fast slow

2.50 × 105 fast fast slow

2.51 × 105 fast fast slow

2.52 × 105 fast slow slow

2.55 × 105 fast slow slow

2.56 × 105 slow slow slow

2.58 × 105 slow slow slow

Figure 10 shows the crack velocities predicted when λC = 2.45 × 105. For this value of λC , all the loading rates

resulted in fast crack growth. Conversely, in Figure 11, λC = 2.56 × 105 results in all the loading rates yielding slow,

stable crack growth. It appears that the predicted crack growth velocity is dependent on the loading rate in the slow

crack growth case. This behavior is expected because in slow crack growth a few elements open immediately, then

an amount of time passes before the stress can build up enough to open a few more elements. A faster loading rate

simply results in less time to build the stress to the required levels for failure. No differences were seen in the crack

growth at a single loading rate, with different values of λC , if the same fracture mode was expected. For example, at a

loading rate of 4000 mm/min, if λC ≥ 2.52 × 105, all crack growths were slow and identical.

5.4. Stress-Controlled Crack Growth

5.4.1. Preliminaries
As mentioned in Section 1, the stress state of the material has a great influence on the fracture mode expected.

Adding the stress state dependence of (21) is a major contribution of this work. Siegmund and Brocks (2000), Tijssens

et al. (2000), Estevez et al. (2000), Gearing and Anand (2004), and Anvari et al. (2006) are some authors that have

used information from the stress state in finite element simulations of material failures. With the exception of Gearing

and Anand (2004) all of these works are limited to two dimensions. Only Siegmund and Brocks (2000) and Anvari

et al. (2006) use information from the bulk field’s stress state to inform the cohesive zone model’s behavior. However,

their use of stress triaxility in two dimensions misses the most important aspect of the stress state: the out of plane

stress (i.e., σzz). Table 4 illustrates this point. In these simulations, two specimens of different thicknesses (1 mm

and 6 mm) were loaded to the same displacement prior to cohesive crack growth. The third column corresponds to

a 1mm thick sample with a highly refined mesh. That result will be discussed shortly. The stress states of the bulk

material were analyzed to determine the effects that thickness has on the stress state. It was found that the in-plane

components (x and y) were remarkably consistent even as thickness changed. However, there is a significant change

in the z component stress values. If stress state is to be used in numerical analysis to determine fracture mode, then

three dimensional simulations must be used in order to capture the effects the out-of-plane stresses. This is especially

important when investigating the transition from plane strain to plane stress or from fast to slow failure because the
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Figure 10: Comparison of fast crack growth velocities at different loading rates. (λC = 2.45 × 105)

Table 4: Maximum stress values in meshes of two different thicknesses

σ(MPa) 6 mm 1 mm 1mm-fine

σxx 28 28 35

σyy 51 51 51

σzz 18 5 9

σxy 20 20 25

σxz 10 2.8 3.9

σyz 11.7 4.7 7

stress state in a three dimensional specimen is a combination of plane strain in the interior and plane stress at the

exterior of the geometry.

Figures 12 and 13 show the effect of thickness on σR in simulations. The ratio σR calculated from (21) is a natural

way to determine how “close” a portion of the geometry is to a plane stress or a plane strain stress state. The figure

displays the plane in which a crack would propagate. The black line represents the crack front with the arrows pointing

in the direction of crack growth. The area immediately ahead of the crack tip experiences a maximum σR value of

0.22 in the 6 mm sample; the 1 mm sample exhibits a maximum σR of 0.062. This shows that there is a quantitative

difference between σR in specimens of different sample thicknesses. These meshes are identical with the exception

that Figure 12 is six times the thickness of Figure 13. The element sizes are all identical. This results in a rather coarse

mesh for the 1 mm geometry.

To investigate the effect that mesh refinement has on σR, the 1 mm thick sample was refined to an element height

three times smaller than that seen here. Therefore, there were 18 elements through the thickness instead of 6 as shown

in the figure. Figure 14 shows the σR response of the finer 1 mm mesh. The σR scale is the same as the 6 mm mesh

from earlier. Notice that there is an obvious quantitative difference between the σR values in each geometry. The

peak σR in the fine mesh is about 0.12. These values correspond to a percent difference of about 83%. The mesh

refinement leads to a slight change in the stress tensor as seen in Table 4. Additionally, consider the stress criterion

of a critical hydrostatic stress being used to determine if plane stress or plane strain controls. Recall that hydrostatic

stress is defined as

σH =
1

3
(σxx + σyy + σzz). (44)
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Figure 11: Comparison of slow crack growth velocities at different loading rates. (λC = 2.56 × 105)

From Table 4, the σH value for each mesh is 97, 84, and 95 MPa respectively. There appears to be a difference

between the 1mm and 6mm thick geometries; that difference is about 15% initially for the same level of discretization.

However, when the 1mm mesh is refined, that difference quickly disappears.

Figure 12: Stress ratio (σR) in 6 mm sample.

In the previous example, σR was evaluated by analyzing the bulk elements that border cohesive elements. It is

necessary to inform the cohesive zone elements with σR from the surrounding bulk elements to perform this type

of analysis. As an example, consider a cohesive element that is bordered by two adjacent bulk elements in a three-

dimensional mesh as seen in Figure 15. During the cohesive surface initialization, the bulk element global identifi-

cation numbers were determined by searching the mesh for shared nodes. For the given example, this process would

determine that cohesive element #3 is attached to bulk elements #1 and #2. When cohesive element #3 is instructed to

provide its traction value for the internal force vector, the current stress of state of elements #2 and #1 are processed

to return a σe
R value for each element. Then, both σe

R values are averaged to return the average bulk stress ratio σR

actually experienced by the cohesive surface element. This value is then passed to the cohesive surface model routine

to determine whether a high or low energy threshold should be used in the calculation.

The method implemented to return σR is only valid if no topological mesh changes occur during the simulation.

That is the case for the simulations run in this work. However, if cohesive surface elements were to be dynamically

inserted into the mesh, the search for bordering elements would have to be performed just before calculating the
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Figure 13: Stress ratio (σR) for coarse mesh in 1mm sample.

Figure 14: Stress ratio (σR) for fine mesh in 1mm sample.

⇓

← Element ID = 2

↑
← Element ID = 3

↓
← Element ID = 1

⇑

Figure 15: Cohesive surface element inserted between two bulk finite elements. The cohesive surface relies on stress state information from the

surrounding bulk elements to determine the failure energy required.

internal force vector, not during the initialize step. This would result in significant reductions in a finite element

code’s performance.
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5.4.2. Stress Dependent Cohesive Zone Results
In order to elucidate the stress state dependence of the model, the σR term was isolated by placing A = 1 in (26).

Simulations were performed in the same manner as in the rate dependent case. In this parameter study, σRC was varied

as was the specimen thickness. This resulted in determining of σRC values where each specimen thickness transitions

from slow to fast fracture.

Table 5: Stress dependence of new cohesive zone in fracture simulations

σRC 1 mm 2 mm 3 mm

0.007 fast fast fast

0.008 trans fast fast

0.009 trans trans fast

0.010 slow trans fast

0.011 slow trans fast

0.012 slow trans trans

0.013 slow slow trans

0.014 slow slow slow

0.015 slow slow slow

0.016 slow slow slow

Table 5 shows the results of the σRC and thickness parameter study. The fracture modes “fast” and “slow” are

defined in the same way as the previous section. However, now there is a separate fracture mode termed “trans” for

transition. The transition fracture mode indicates that one particular type of fracture mode did not dominate the entire

fracture. For example, in some cases a crack would progress slowly for some time, then quickly through the remainder

of the specimen. If the slow crack growth portion was less than 1/2 of the specimen fracture area, fast crack growth

was said to be the controlling mode. In simulations, if fast fracture would occur after 1/2 of the total area of crack

growth had occurred, then the failure was called a transition failure. The one exception to this occurred when the

last few elements near the end wall would quickly fail. This was called slow fracture because the speed of the crack

advance was overwhelmingly slow and the failure energy was obviously high energy, but only the last 3-6 rows of

elements would quickly open. This slow behavior was explained earlier and can clearly be seen in Figure 8

Figure 16 shows the simulated fracture velocities of a fast, transition, and slow failure in a 2 mm thick sample

using the stress controlled cohesive zone model. The stress controlled fast and transition failures show a period of

slower velocity crack growth at the beginning of the fracture. This period seems to correspond very well to zone I

of PC’s fracture surface morphology characterized by Hull and Owen (1973). During that time, stress builds and the

crack progresses slowly in a relative thumbnail shape. Eventually, in the transition or fast cases, the crack will begin

to progress quickly. In the slow cases, it continues to slowly progress.

An example of the thumbnail shaped crack can be seen in Figure 17, which shows a 2 mm thick specimen near the

end of zone I, just before the crack progresses quickly. The top half of the specimen is removed so that the cohesive

zone elements along the plane of crack growth may be viewed. The bottom half of the specimen is colored by the

maximum principal stress values per element. The cohesive elements are colored gray and are set to disappear after

cohesive death has occurred. This enables the visualization of the crack tip as it advances.

If a single σRC value is considered, like 0.011, it is easy to see that a transition in fracture mode occurs as the

specimen thickness is increased. In the next section, stress state and rate effects will be coupled to simulate a fracture

mode transition with both effects considered simultaneously.

5.5. Coupled Rate and Stress Effects

The coupling of rate and stress state effects by (26) is the key feature of this model. The final parameters investi-

gated in this study were A = 0.5, σRC = 0.0065, and λC = 2.50 × 105. Table 6 shows the results for fracture mode for

the material parameters given.

The parameters σRC and λC were chosen with time constraints in mind. That is, σRC was chosen lower than the

expected value, based on the study from Section 5.4.2. This allowed for the transition from ductile to brittle failure
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Figure 16: Simulated fracture velocities with stress controlled cohesive zone. The crack velocity transitions from fast to slow as σR is adjusted to

require a stress state approaching plane strain for low energy failure.

Figure 17: Zone I and a thumbnail-shaped crack front in a finite element simulation.

to occur at a lower value of thickness. Therefore, fewer total elements were needed in simulations. For example, all

other things remaining equal, a mesh that is 1 mm in thickness will have three times fewer elements than a mesh that

is 3 mm in thickness. This explains the very minor changes in the fracture mode results at thicknesses greater than

2 mm. Likewise, λC was chosen in such a way as to minimize simulation time. This resulted in an arbitrarily large

value for the parameter, but allowed for a fracture mode transition to occur at higher overall loading rates. In explicit

dynamics, the time step size is limited for solution stability. Therefore a simulation run with an 8000 mm/min loading

rate actually takes about eight times shorter to run than a simulation with a 1000 mm/min loading rate. To further

appreciate the time constraints mentioned above, a 1 mm thick sample loaded at 8000 mm/min had a run time of just

over 7 hours when run on 16 processors of the MPI cluster used in this work.

In summary, the data of Table 6 display unprecedented results. Consider the fast fracture mode of the 1 mm thick

geometry loaded at 8000 mm/min. Due to thickness, it would be expected that a 1 mm sample is very nearly in a

plane-stress stress-state and slow fracture would be expected. However, due to the fast loading rate dominating in the

controlling equation (26), the sample fails in a brittle manner. This is consistent with the behavior seen in thin samples

of PC. As the loading rate is decreased (e.g., 6000 mm/min), the fracture mode transitions into the slow regime. This
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Table 6: Fracture mode transition for coupled problem.

Loading Rate 1 mm 2 mm 3 mm 4 mm

8000 fast fast fast fast

7800 fast fast fast fast

7600 fast fast fast fast

7500 slow fast fast fast

7000 slow fast fast fast

6000 slow fast fast fast

5000 slow fast fast trans

4000 slow trans trans trans

2000 slow trans trans trans

1000 slow trans slow trans

500 slow slow slow slow

allows for the stress-state in the material ahead of the crack tip to control the failure mode. Then as the thickness is

increased, but loading rate is held constant, the fracture mode transitions back to fast fracture. This occurs because the

stress-state has been increased toward a plane-strain stress-state. This is the first instance of using numerical analysis

to simulate a fracture mode transition due to rate and thickness effects with a single set of material input parameters.

6. Conclusions

In this work, the SPEC model has been applied to mode I fracture problems in thermoplastic glassy polymers.

The model is a continuum model; therefore, it is not designed to capture the different micromechanical processes,

such as crazing, that influence the deformation behavior of the material. However, the new cohesive zone model

was implemented to phenomenologically capture the micromechanical processes in the fracture process zone that the

SPEC model was not designed to capture.

A single set of input parameters have been used to simulate the transition from slow to fast fracture as both

thickness and loading rate change. Three-dimensional explicit dynamic finite element analysis was performed and

a new cohesive zone model was implemented that is rate and stress state dependent. Therefore, loading rate and

thickness inform the traction-separation behavior. The cohesive zone model’s behavior accounts for both the low

energy critical scenario of fast, brittle crack growth and the high energy scenario of slow, ductile crack growth. While

there are some rate dependent and/or stress dependent cohesive models, these models either are not applicable to

polymer behavior, or are not capable of capturing a fracture mode transition.

In this work, the cohesive traction remains constant in areas of either ductile or brittle failure and reduces from

high to low as loading rate is increased. This results in less bulk yielding at high loading rates and thus more fast,

brittle failures. The rate dependence of the cohesive model is incorporated by determining the cohesive opening rate.

The model uses a critical cohesive opening rate λC as the threshold opening rate. Below λC , the high energy regime

controls, resulting in slow, ductile failure. Above λC , the low energy regime controls, resulting in fast, brittle failure.

Three-dimensional analysis is of primary importance when performing stress analysis aimed at the ductile to brittle

transition. Plane-strain results in fast, brittle failure and plane-stress results in slow, ductile failure. Two-dimensional

analysis idealizes stress in the third dimension. Previous stress state dependent cohesive zone models are limited by

two-dimensional analysis.

Here we show that regardless of thickness, in-plane stresses do not vary significantly. However, the stress in the

thickness direction varies significantly. A stress ratio σR was proposed that is able to quantify the amount of plane-

strain or plane-stress that exists at a point. A critical σRC was utilized above which the low energy regime controlled

crack growth and above which the high energy regime controlled crack growth.

The stress and rate dependencies were coupled in a simple, linear way. Without changing input parameters, the

model shows a fast, brittle failure in a thin sample thickness when loaded at a high loading rate. As the loading rate

is reduced, the model transitions to slow, ductile crack growth. As the sample thickness is increased, while holding
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loading rate constant at the lower value, the model transitions back to the fast crack growth regime. This behavior 
is consistent with the behavior seen in the experimental  analysis.  The model can easily be used and compared with 
experimental results to construct the full fracture mode transition  behavior based on loading rate and thickness effects. 
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